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,_i_ PROBLEM OF HYDRODYNAMIC DRAG i/
i " V..I.-Merkulo_

.... The Grex _nd d'Alembert-Stoke s Paradoxes /52 m I_ i
:r _, I

i

L _i Thlnty years-ago the_English--physlologis8 GP_ey, obaerv- _

i , ing that dolp__s si_Im-rapidly, and. in Inyeetigating thei_ i_

il muscle-capaclt_ reached _ panadoxical conclusion: that-as_
R

ii they move, the animals_need_to develop an energy seven times
!I-: _ greater than is necessary _move their muscles. All _his

contradlcts pre_iously known facts_----

: Experiments to clarify thls paradox of Grey's force one :_
?i

to make the assumptlon tha_, in swimminE, the llve dolphin

: i experiences far less drag than a solid model-of it, upon which i_
basis the English physiolozist cvme to his conclusion.

Some investigator has observed that Orey's calculations

were exaggerated: the dolphin experiences a drag four times

less than the solSd model. Therefore the physiologist erred- _,

• in evaluatlnE the ene_ of the moving muscles. Perhaps there

was no paradox at all.

Instead of looking for answer_ to _hese q_estions, we

mad_ simple calculations of the energy necessary for tuna,

which move at a velocity of 90 _/hr. _e inten_ionally chose

i this animal and not, say, the swordfish, which can swim 130

km/hr, _ecause the velo.3ity the tuna attains Is instrumentally

s Numbers In the margin Indicate pagination in the foreign text.

_t' I
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;_ Let us suppose that the tuna experiences the same drag
!i as the solid model. Then for a 100% coefficient of _ffective :
?:

_! motor activit_V, an energy "

g _

i; is necessary. _:

• .li With a _ross-Sect_ional diameter of d = 0.5 m and a move-

:--'i! ment rate of v = 25 m/sec, N = i00 kcal. j

!For this estimate, we took as the experimental value of

the dlmensionless coefficient c for bodies 2.5 m lone the

R_ynolds number 6"107.

• In order to develop so great an energy, the tuna must take

in as much oxygen as a hundred horses. Even if one is not a

physiologist, it is not hard to underst._nd that for a fish

which breathes oxygenj which is soluble in water in very small

concentrations, this is absolutely impossible.

Therefore the evidence in nature of an effective mechanism

of decreasing 5ydrodynamlc drag has not caused any doubt. _.....

Engineers have always thouKht about decreasing the hydrodynamic l'_

drag of bodies which move underWater. Studying the f&st-moving

inhabitants Of rivers and oceans yields a basis for supposing _

,_ that in thl, wa_ there is even an inexhaustible source of _j'_

energy.

i
answered with the _"• The paradox of the physiologist Grey is

theorem formulated by th_ mathematicians d'Alembert and Stokes_ i_I'

which in due time, came to be known as the equation of motion

of a viscous fluid.

i

, These investigators noted this tact: when drag in a /53
i fluid devoid of viscosity equals zero, _n low-viscosity fluids

., it is quite large.

¢4
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Noting that the viscosity is very low, the conclusion i_

• may be drawn that the removal of the d'Alembert-Stokes papa- iI

i dox simultaneously raises the conclusion of Grey. i!

! It is Just for this _eason that we shall Rro_ose a new i

' set-up for the problem of the dynamics of a viscous fluid.

_ The New Problem SetgUp ]

Motion o£--a viscous incompressible _fluid may be described !4

by equations-which we shall write in the dimensionless vector 1!

form: _i

•

--

Here w(u,v,w) is the velocity vector, p is pressure,
A

p = a constant, the density of the fluid, and R = vl is the '"

Reynolds number.

If, in a fluid immovable at infinity, a body with a sur- _ Iil

face S moves with a uniform velocity in the direction of the i! I
x axis, the equation becomes, under the following llmlting i_

conditions; -_ -._

_=w=O, u.=! _aS, (2) _i

• ]lmu = [imv = lira= =0 (3)
R.

Having taken R = ®, we obtain the degenerate equations:

(_)
dlv_ = O,

which describes the flow of a viscous fluid. They have a low

order and, instead of three limiting conditions (2) at the _i

boundary s, only one is allowed for the normal component of

the velocity
/

=_=f_) ,,a_. (5) 'i

3
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The d'Alembert-Stokes paradox consists of the coefficient /
- of drag c(R), calculated from the solution to.problems (I)-(3), .

_ with the increase in R not passing through the zero value of

_ this coefficient, which follows from the solution of equations

(,) and (5).

I_ such a way, the physical problem_of reducing hydrody-

namlc-dnag leads to this mathematlcal problem.

It Is_necessary to point out all_ the possible boundary

values of the vector w at the boundary S, for which the solu-

tlon to equations (1)-(3) proceeds by means of the coefficient

of draE to the solution of problems (4) and (5).

With this aim, it is limited to a consideration of planar 1
flow which can be described with the aid of the flow function

by the following system of equations:

DIA_'.'l,) . 3.._%.a (6) |Dix,y)

" For equation (6), it is necessary to give the following
- I

limiting conditions : i

i'; _=v.(S)_aS. (7)

a.:, (s) - "i
-_n _"Vs(S)' 1
_,,= i; (9)

_,#, #

at (i0) 1
llm-d.4 ,=0 np..xi+_-_m.

. Here vn and vs are the normal and tangential velocity of the
boundary flows.

Tgrbulent Flow of an Idg_R1 Fluld Approx_matln_ Flow of a

Viscous Fluid

It always seems to be observed that the boundaries cannot

be deformed, and then vn = vs - O. We observe them to be not _v

1976026347-T£An7
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'_ _i equal to zero, and we use them. such that the solution of the
I _i boundary problems (6)-(I0) are not subject to the d Alembert- !_

I- _il Stokes paradox. Then for the coefflcient of drag having con-

_ tinuously developed at the solution of the following problem

l for an ideal fluid: i i
• _, D (%@q')_0. (II) 1

!

_,_ l|mO__._==Lnp._,+y_,._; •_' oy (13)

It is known that equation (11) is equivalent to:

oi! "
i

! _ The solution to equation (14), which we designate ¥o'1 I

_I _ satisfies, with an error on the order of 0(_), equation (6) !__

! _ !i and the limiting conditions (7) and (8). It is not hard to _

_: > prove that if the function F(¥) is chosen such that llm _i

_ F(¥) = 0 for * -, then at the same time the condition (I0) _ •

i' will be fulfilled.

• !

! Let us assume Us(S) to be such that there exists a cot- ._ .responding function F(%), f_xrwhlch the equation

_F= Us(S ) is obtained._n

Then the solution to problems (11)-(13), with an error

on the order of 0_-_ can be the solution of the resulting

problems (6)-(10) and our task is red_,ced to finding the

function F(#).

Let there be some resultant function F0 as to the solu-

tion of _0 of the equatlon

_o " FO_)'

5
REPRODUCIBILITYOF Tli_
_RI(ITNALPAGE ISPO0_:
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i_ which satisfies the limiting conditions (7), (9), and (i0), /
t__ . or does not satisfy the condition (8), such that

-- U,(S)= _u,(.%

where n is a minor parameter.
i

Let us represent the function F in the form of a sL_

(_)= _o(_)+ _, (_).

" Then the solution to the equation

can also be represented in the form of a sum /55

For this variation in the function _ with an accuracy to

the second order of smallness relative to n, the linear equa-
¢

t ion _ _ _ (_,o)= F=(_%). _,
i

_

' is also satisfied. I

It is possible to represent the arbitrary variation in

the form of a series for some complete set of functions 1
q

F=1%)"= _._anp.(%) .

.=, ......._
A

l

Let us Introduce into the investigation, the se_ of ffunc-

tions #n, which are solutions to the following nonhomogeneous
equations

A,p_-- A,p,,F;('%)= p.(¢0)
_lth the homogeneous limiting conditions

ii _*n = _ - 0 for + �-
0 in S; lim x2 _2 i

Then the variation in the function ¥ has the form of a sum I !

1

• _

1 CI7R09R_A7_TC ^ nn
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where the coefficients a n are the same as in the function :;

Now it is possible to calculate the normal derivative
N

and to set the requirement that it approximate the function

UI(S) , for instance, in the matrix L 2 .

IF "
The requirement that the expression mentioned attain its ii.

least value leads to a system of linear equations in the co- ::
&

efficients an i

..A_=Sm (m= 2, ...,N),
.=.

where Anm and Bm are expressed as the squares ._

_m- &p= - _ _= Uxds" i_
¢

A_riori investigations of the given problem in the i_

general form are quite numerous. But the apo_er_ori evalua- _:,

tions in the process of calculation yield the possibility of

extlmating the corresponding subsequent approximations and i!

_hose which the function UI(S) can attain by the approxima-
tions selected.

It is usually more interesting if the series a,

I
- does not approach the function UI(S) , although possibly it is ._

only slightly different. In the case given, the solution }!:

approximates the motion of a viscous fluid very we]l in the t
: middle of the flow, but at the boundary zone with a width on 15_ 1

_4.1) a boundary layer occurs, owing to Which
the order of 0 ._ ,

7 ' 't

l/_: j
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all the limiting conditions are satisfied. We shall consider

thi_ in more detail for complete periodic flow.

We studied flow which occurs during motion of a viscous

fluid along a streaming wave. Insofar as it achieves, in '_

the absolutc system of coordinates, nonstationary limiting i

conditions, we explored this flow in a carrier system of i!

coordinates, which moves along with the crest of the wave with

a uniform velocity. In this system, a streaming wave is cre-

ated on an undeformed, undulating surface.

Wave flow of a viscous fluid w_th periodic boundary con-

ditions will also be periodic. Therefore it is possible to

look for a single long wave at the boundaries.

The velocities of the outer stream and the boundary cur-

rents have opposite directions. Wave flow of an ideal fluid,

shown in the figure, ensures the necessary velocity agreement.

8 R_EODUCIBILITY OF TH_
_RIGtNAL PAGE I8 POOR

l,t
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_i This flow, called secondary, is described by the solu-

!'i tion to the equation /

'_ Av0 = FO(Y),

where

_ is assumed.
!

i

_ It is not hard to understand that such a solution, being

approximate, is not unique. However, it can serve as a first

approximation for applying a preliminary algorithm, which

yields the possibility of ftnding the function, the normal

derivative of which best approximates the value of the tan-

gential velocity v s of the boundary currents.

In this general case, if v,_ ')'_°-o7' the solution obtained

can only be used in the middle of the flow. But in a narrow

zone with a width on the order of0 (_), a boundary layer /57
is created, owing to which the necessary solution on the

boundary is achieved.

We found the solution at the boundaries of a _iscous

boundary zone. For a system of equations, we take this limit-

ing arc x and the normal to It _. ._ | ,

The Periodic Boundary Layer

_ Flow-In a boundary layer Is described by the Prandtl

equations:

. • (17)

Here u and v are the velocity components In the curvl-

'. linear system of coordinates chosen. _.

• #
• t -

..... # ,

_-__ =,, ,._,_._#_r__ _ _ _ _- .... _.=='___,

1976026347-TSA12
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The functions v s and _ will be limiting values of

the velocity for the component u. It will be convenient for

us to display them as a Fourier series:
o@

u (x,0)= v, = I + .-_0a. cos.x, ( 18 )
i

¢IJ

' x (19)

Here we observe that the choice of scale for the wave-

length is reduced to" 21.

Owing to _a = O, the pressure p coincides with the pres-
sure in the ou_r stream and satisfies the equations

• oa_' __ ^ a. ° 1 t)'-t_ -- I cgp

We introduce a new dependent variable _ = u - u°. Sub-

stituting this function in (15), we obtained the homogeneous

equation_

We reject values of a second order of smallness; then

O,, ! _ (21)
"a_=-_ "_"

This simple equation requires solution with the followin_

limiting conditions : ,........

. (x, o)= _ (,,,,-,g,) cos.x, ( ._;z) !
'

_(x, m) ,='0. (23)

The solution of equation (21) can be sought in the form of a

serdes in which the coefficients un and w n must satisfy the /58

following system of equations: _= _u.(U)cosnx+v,,(y)s_nnx,

-_--_,-+ ,,u. = 0; -16"_c --ttu. = O.

We multipl_ the second equation by i and add it to the

• first. For the complex unknown

t: Wn = Un + iv n :

l0



Now it is possible to calculate the dimensionless behavior

of forces of tangential friction, which is equal to the ooeffi-

cient of frlo_ion squared

_m._: (dx,--I, , - , a•,,d._'= co.',,x_o,+-el
' (25)

BE_BODUC_ILITYOF THE
....._ ,,I_I£dNA_PAGE 18._OOg ii
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_ The specific_ of the b_undary layer studied consist of-

causing a small sequence of velocities, directed to one side.

This Justifies taking its simplified equation. Moreover,

'' pe_iodlc boundary conditions cause periodicity in the bound-

i ary layer_

: Both these clrcumstance_lead-to an effective Reynolds

• _ _Io_ number which was examined, appears low, and does not

r depend on the dimensions of the e_ire body.

• The Str_.amin_.Wave: The Mechanism of Reducing Hydrodynamic Drag /59

The solutio_ which we constructed, owing to its complete

"_ _eriodicity, describes flow with zero drag in the usual sense.

-_'_- Having applied motion with an active boundary, the drag co-

efficient is then calculated f_.om the force necessary to sus-

tain flow wlth zero drag. This force-comblnes dissipation,

which is equal to

and the energy necessary for Ohe formation of a vortex in one

hour. The firs_ addition is o_ the order of 0(_), ar4 the
A _

second 0(_) whet@ I is the wavelength an_ L the length of its ._l

bO_, which-ls flowing along_ This same force must equal, in

the optimal case, tLe work done over one hour by the forces

of tangential friction, calculated from formula (25).

What advantages has the streaming wave compared with a

smooth solid surface? They are conditioned first of all by

the periodicity of the flow-. While at the solid boundary,

the local Reynolds number increases, avoiding th% first crltl-

I cal point (such a flow necessarily becomes turbulent, it re-

mains constant in periodic flow and may be chosen suf_lelently

small that the flow will be laminar.

12
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I! The advantage of the flow which was studled is especially _i

i. great in.flowing bodies of small exten_ T_n,. a_ in bodies i
-- with a solid boundary there are formed abrupt flo_-swith a ._
7 ]._

high drag coefficient, the active bounda1_ preaenv_s continuous
. i!

• flows with a zero drag to pressure. If one takes into considera- _

. t_ton that the presently p_rovided decrease of. drag to pre_sune _ i_
ls reduced to the size of the relative length, i.e._ to the size _

_- of the drag friction, it is-possible to understand the advan- !I

_. rage which the flow described yields, _i.

j :_

-" All the cases cited above are prohibited in thesolution _

of the equations of viscous-fluid motion. Using these in con- _

formity with_physical flow, it is possible, if the limiting !I

conditions are taken for those physically achieved.

There remain some requirements for this. i
I

; ii
Usually, it is possible to imagine a mechanism, observed

in a model, which compels varying the boundary co_responding _i

to the given law. However, such a construction is so compli- !_

!_ cate@ that it is practically prohibitive. Therefere__!et us

look at another procedure___ -.

The streaming wave may be a resime of aato-oscillation !.
on an elastic surface• Excitation and oscillation of the

regime are realized either by a specific mechanism operating !|i or by means of the principal stream.

In this way, creation of a streaming wave is sufficient

to regulate elastic properties in relation to the _elocity of !

the fluid flow.

i

It is entirely possible that such a mechanism of str_amlng- I

wave formation and hydrodynamic-drag reduction occurs, we say, ,
!

976026347-TSB02
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in dolphins and tuna. Their thick layer offat and muscle /
b

may be that elastic covering in which the wave is generated ...... ]
Special muscles in the dolphin regulate skin tension and

thereforeltselastic properties.

- Analysis af the equations of motion for a viscous fluid

has shown_tha_ in this_ase, i_'a sp_clally selected stream-

!!_ ing-wave is generated on_the surface of_a body,
an original

secondary flow occurs along it with zero drag. Here, _ch
]

an effect is attained by loss of_ Very small energies.

The results obtained may be use._i-to explain the "secrets"

! of the rapid and economical swimming of aquatic-animals and

to create technicaL-means for reducing hydrodynamic drag.

li i,i L
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